
Dynamic susceptibility contrast perfusion MRI: concepts and applications 
Fernando Calamante 

Brain Research Institute, Melbourne, Australia (Email: fercala@brain.org.au) 
 
Introduction 
  
Since the early studies in the late 1980s, dynamic susceptibility contrast MRI (DSC-MRI, also known as ‘bolus 
tracking’) has become a very powerful technique for the assessment of perfusion1, and perfusion-related parameters 
(see (1,2) for recent reviews). Despite the need of an exogenous MR agent (cf. arterial spin labeling techniques), 
DSC-MRI is currently the most common MR perfusion methodology in clinical studies. This is due to the relatively 
high signal changes introduced by the contrast agent, the short acquisition time required, and the wealth of 
information that generates (it provides information not only about CBF but also about other hemodynamic 
parameters within the same scan). It relies on the injection of a bolus of a paramagnetic contrast agent, which 
produces a transient decrease in signal intensity on a series of gradient-echo or spin-echo images acquired during its 
passage through the brain (3). The loss in signal intensity is due to the decrease in T2* or T2 associated with the 
susceptibility-induced gradients surrounding the paramagnetic contrast agent (4). This effect is more significant in 
areas where the contrast agent is compartmentalized (since this increases the induced gradients) and makes 
quantification of cerebral perfusion in areas with blood-brain barrier (BBB) leakage more complex (see later). Since 
the passage of the bolus through brain tissue is of the order of a few seconds, a very fast imaging method is required 
to fully characterize the induced signal changes. The most common imaging technique currently used is EPI, which 
allows for a good compromise between time resolution (typical TR≈1.5sec), image coverage (typically 10-15 slices) 
and spatial resolution (typical voxel size 2x2x5mm3).  
 
Quantification – Convolution 
 
The changes in relaxation rate ΔR2* are related to the contrast agent concentration: the larger the concentration, the 
larger the observed effect. Early work has suggested that this relationship can be assumed to be linear (3-5):2
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where C(t) is the time dependent contrast concentration, and k is a proportionality constant that depends on the tissue 
type, the contrast agent, the field strength, and the pulse sequence. Therefore, if one assumes negligible T1 effects 
during the bolus passage, C(t) can be calculated from the changes in signal intensity with respect to its baseline (i.e. 
pre-injection) value:  
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where S(t) is the signal intensity at time t, S0 is its baseline value, and TE the echo-time of the MR sequence.  
 
The concentration in the tissue is not only proportional to CBF, but it is also affected by how the study is done (for 
example, a slower injection will lead to a wider C(t)). Using indicator dilution theory, the concentration time course 
can be shown to be expressed by a convolution equation (9,10): 
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where the symbol ⊗ indicates the convolution operation, Ca(t) is the arterial input function (AIF), i.e. the function 
describing the contrast agent input to the tissue of interest, and R(t-τ) is the tissue residue function, which describes 

                                                 
1 Throughout this document the terms perfusion, cerebral blood flow (and its acronym CBF) will be used indistinguishable.  
2 Although a linear relationship is usually used, recent studies have suggested that this linear relationship may not always be 
valid, particularly for large contrast concentration such as in big vessels (6,7). Therefore, although the assumption of a linear 
relationship may be valid for the concentration in the tissue, it may be a significant source of error in the measurement of the 
arterial input function (see later). Possible solution: use the phase information of the MR images (7,8). 



the fraction of contrast agent remaining in the tissue at time t, following the injection of an ideal instantaneous bolus 
at time τ. The proportionality constant α depends on the density of brain tissue, and the difference in hematocrit 
levels between capillaries and large vessels (to compensate for the fact that only the plasma volume is accessible to 
the contrast agent) (1). The integral in Eq.(3), accounts for the fact that for a non-ideal bolus, part of the spread in 
the concentration time curve is due to the finite length of the actual bolus. It is possible to interpret the integral 
expression in Eq.(3) by considering the AIF as a superposition of consecutive ideal boluses “Ca(τ)dτ” injected at 
time τ. For each ideal bolus, based on the definition of the residue function, the concentration still present in the 
tissue at time t will be proportional to “Ca(τ)R(t-τ)dτ”, and the total concentration Ct(t) will be given by the sum (or 
integral) of all these contributions.  
 
Quantification – Deconvolution 
 
Quantification of CBF therefore involves inversion of Eq.(3), a mathematical process known as deconvolution (10). 
This requires measurement of the AIF (see later), and calculating the scaled residue function CBF·R(t) (known as the 
impulse response function). Once this function is calculated, perfusion can be obtained from its initial (or maximum) 
value, since R(t=0)=1 by definition. Although inverting Eq.(3) (i.e. performing the deconvolution) may appear 
simple at first sight, this inverse problem is known mathematically as an ill-posed problem. This means that even a 
tiny amount of noise in the measured concentration curves will have huge effect on the calculated impulse response 
(and thus CBF!). Therefore, a considerable amount of work has been done in the last decade to develop, assess, and 
compare various deconvolution algorithms. Some of the algorithm proposed to date include: Fourier Transform 
approach (10,11), singular value decomposition (SVD) and its variants (10,12,13), maximum-likelihood 
maximization (14), Tikhonov regularization (15), expansion in orthogonal polynomials (16), and Gaussian processes 
deconvolution (17). Ideally an algorithm should lead to accurate measurements under a wide a range of practical 
situations, such as under various tissue characteristics (e.g. perfusion values, residue function models), imaging 
characteristics (e.g. SNR levels), sequence parameters (e.g. TR, TE), as well as for other experimental conditions 
(such as the presence of bolus delay to areas with abnormal vascular supply). Furthermore, the algorithm should be 
fast to be able to be used in a clinical environment. Unfortunately, there is currently no single algorithm that fulfils 
all these requirements; the likely reason for the lack of consensus between users. It is for this reason that this is still 
an area of very active research. 
 
Quantification – CBV and MTT 
 
DSC-MRI can provide information not only about perfusion but also about other physiological parameters. For 
example, due to the compartmentalization of the contrast agent within the intravascular space (for an intact BBB)3, 
the cerebral blood volume (CBV) is proportional to the normalized total amount of tracer (i.e. the ‘area under the 
peak’) (1): 
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where the proportionality factor α-1 is the inverse of the factor in Eq.(3). The normalization to the integral of AIF 
accounts for the fact that, the more tracer is injected the greater concentration will reach the tissue, regardless of the 
CBV. A third physiological parameter accessible by DSC-MRI is the mean transit time (MTT: the average time for a 
molecule of contrast agent to pass through the tissue vasculature following an ideal instantaneous bolus injection). 
These three physiological parameters are not independent, but they are related through the central volume theorem 
(1): MTT=CBV/CBF.  
 
Quantification – Absolute units 
 
DSC-MRI can provide, in principle, CBF in absolute units (typically ml/100g/min). There are three main 
approaches to achieve this: 

                                                 
3 When the BBB is not intact, quantification of CBV is more complicated; its calculation must account for the contrast agent in 
the extravascular space (see later).  



1. Use of an internal standard: since CBF measurements using PET have initially suggested a relatively age-
independent and uniform white matter value of 22 ml/100g/min in normal adults, a region in normal white 
matter was proposed as an internal standard to convert the MR measurement to absolute units (18). 

2. Knowledge of the proportionality constants: if the values of the constants appearing in the equations above 
are known, the deconvolution method would lead to absolute measurements (11,19-21). 

3. Use of a scaling factor obtained from a cross-calibration study: the MR CBF values can be converted to 
absolute units by using an empirical conversion factor calculated (usually from a separate study) by cross-
calibration of DSC-MRI to a ‘gold standard’ technique (e.g. PET) (22,23). 

 
Although all these approaches have been used to calculate perfusion in absolute units and the values obtained in 
normal subjects are consistent with expected CBF values, there are still some concerns regarding the accuracy under 
various physiological conditions (24-27), and the agreement might have been fortuitous. In principle, all the 
approaches can potentially lead to errors, particularly in the presence of pathology. For example, a recent study has 
shown a wide variability in white matter CBF values measured with PET on the contralateral hemisphere in patients 
with chronic carotid occlusion (28). Similarly, some studies have shown that the constant k in Eq.(1) may vary 
between tissue types, subjects, as well as between tissue and arteries (6,29). Furthermore, changes in hematocrit 
levels (and therefore α) during pathology have been reported (30,31). Similarly, the validity of a single conversion 
factor under various physiological conditions remains to be shown (27,28,32). Therefore, absolute CBF 
measurements in the presence of pathology should be interpreted with caution. Work is currently under way to 
address many of these issues, and accurate absolute CBF measurements may be possible in the near future. 
 
Measurement of the AIF 
 
The AIF represents the concentration of tracer entering the tissue at time t. Although this function can vary 
throughout the slice, its shape is commonly estimated from a major artery (e.g. the internal carotid artery, or the 
middle cerebral artery), and used as a global AIF for all the slices. However, the presence of steno-occlusive disease 
in an artery may cause distortion of the concentration-time curve between the artery and the tissue of interest as a 
result of the abnormal flow pattern (25). These distortions can introduce considerable errors in the quantification of 
CBF (33,34), which can have important implications for the diagnosis and management of patients with cerebral 
ischemia (25,35). Various deconvolution algorithms have been shown to be insensitive to the presence of delay (see 
for example (11,13,14), and their use is highly advisable. On the other hand, the errors due to bolus dispersion are 
not related to the particular deconvolution algorithm used, but they are a more fundamental limitation of the model 
used in Eq.(3); this equation assumes that the true AIF is measured, and the unaccounted dispersion will be then 
assigned to occurring within the tissue of interest (i.e. interpreted as a prolonged MTT and decreased CBF (35)). 
Therefore, it should be noted that while the particular choice of deconvolution algorithm can remove the delay-
related errors, it cannot eliminate those associated to bolus dispersion.  
 
To minimize the errors related to bolus dispersion, it has been proposed that a local AIF should be used instead (37-
38). This requires the estimation of the AIF from an artery as close as possible to the tissue of interest. In fact, by 
definition, the AIF should be measured on a pixel-by-pixel basis, and a local AIF should be used for the 
deconvolution in each voxel. This approach is likely to be particularly sensitive to partial volume effects, and 
various methods to define a local AIF have been proposed. Although further work is required to validate these 
approaches, they may prove to be a promising solution to minimizing the dispersion-related errors in certain group 
of patients, such as those with arterial stenosis or occlusion. 
 
Quantification – BBB breakdown 
 
The kinetic model described in Eq.(3) is based on the assumption that the contrast agent remains intravascular. If 
this not the case (e.g. when the BBB is disrupted), the distribution of the contrast agent outside the vascular 
compartment decreases the T2* effects, as well as increases the T1 effects (usually neglected) during the passage of 
the bolus. If these effects are not minimized (39) or taken into account (40), significant errors can be introduced in 
quantification of DSC-MRI data (see (41) for a recent review). In order to account for the T1 effects, Weisskoff et al 
(42) modeled the MR signal in terms of the combined T1 and T2* contributions. In such a way, they proposed a 
method to quantify CBV in the presence of contrast leakage, as well as an estimation of vascular permeability 
(42,43). More recently, this work has been extended to quantify not only CBV and a measure of permeability, but 



also CBF (40,44). Since the effects of contrast leakage are included, it should provide a more accurate estimation of 
perfusion when the BBB is disrupted, although a full validation of these modified models remains to be done.   
 
Applications – Acute stroke 
 
The main application by far has been in cerebral ischemia, particularly in the context of acute stroke (see (39,45) for 
recent reviews). The concept of ‘diffusion-perfusion mismatch’ (area with an abnormality observed on DSC-MRI 
but with normal appearing MR diffusion properties) has received great interest in the last decade. Several studies 
reported the expansion of the initial lesion seen on diffusion imaging, such that the final infarct included tissue that 
was in the diffusion-perfusion mismatch area during the hyperacute stage. It was initially believed that the mismatch 
area could therefore be used to identify the ischemic penumbra (tissue with preserved neuronal integrity but 
hypoperfused at a level to cause functional impairment). However, many studies have now shown that not all the 
mismatch area corresponds to penumbra (46): some of the mismatch can represent tissue areas with benign oligemia 
(areas with normal or slightly decreased perfusion that will survive independently of treatment effects) (47).4 To 
improve the tissue characterization during the hyperacute stage, it is now becoming apparent that none of the DSC-
MRI maps in isolation will be robust enough to identify the tissue at risk of infarction with sufficient sensitivity and 
specificity. In the last few years, many groups have been developing predictor models of tissue infarction by 
combining all the available information: the maps obtained using DSC-MRI are used, in combination with diffusion- 
and T2-weighted images, in models to predict the fate of the tissue in acute stroke (e.g. see (48-51)), with the final 
aim of identifying the patients that are more likely to benefit from therapy. This is an area of very active research at 
present, and a comparison of the various models on a common dataset could prove very useful. 
 
Applications – Chronic ischemia 
 
The areas of mismatch have been observed not only during acute stroke, but also in patients with chronic 
hypoperfusion. These included patients with internal carotid stenosis or occlusion (16,27,28,52,53), as well as 
children with high stroke incidence such as those with sickle cell disease (54) and moyamoya syndrome (55). 
Extensive areas of decreased perfusion (in many cases with normal structural and diffusion imaging (54,55) have 
been reported. These studies suggest that areas of decreased perfusion can persist for long periods of time, although 
it is not clear how long such compromised tissue could survive, since the flow “thresholds” for energy failure are 
expected to increase with time. However, it should be noted that due to the vascular abnormalities present in many 
of these patients, a significant part of the mismatch area could be associated to errors due to bolus delay and 
dispersion (25,46).  
 
Applications – Treatment assessment 
 
The use of DSC-MRI has a potential role not only in the identification of tissue at risk of infarction, but also in 
monitoring the efficacy of interventional strategies. For example, to determine the presence and extent of 
recanalization (either spontaneous or due to thrombolysis) (56,57), to evaluate the effect of blood transfusion 
therapy on brain perfusion in patients with sickle cell disease (54), and to assess the effectiveness of surgical 
revascularisation in moyamoya syndrome (55).  
 
Applications – Cerebrovascular reserve capacity 
 
Perfusion MRI can provide information not only about the “resting” tissue perfusion status, but also about the 
cerebrovascular reserve capacity. It has been suggested that measurements of regional cerebrovascular reactivity in 
response to carbon-dioxide, breath holding or acetazolamide could potentially identify the subgroup of patients with 
carotid artery stenosis or occlusion who may be at increased risk of stroke (58). Perfusion MRI provides a non-
invasive means to obtain such information, with good spatial resolution, by comparing the measurement before to 
that after the vasodilatory stimulus (see for example, (16,32,52)).5  

                                                 
4 In many cases, the misclassification of oligemia as penumbra can be due to the errors introduced by delay and dispersion: these 
distortions in the bolus have been shown to introduce CBF and MTT errors (33), which could be misinterpreted as severe 
hypoperfusion, with potentially serious clinical consequences for patient management (25). 
5 It should be noted that studies of cerebrovascular reserve require repeated injections of contrast agent in DSC-MRI. To avoid 
the residual effects of the first bolus during the second study, it is advisable to inject a small pre-dose of contrast agent a few 
minutes before the first study (39). 



 
Applications – Tumors 
 
Due to the complexities of quantifying CBF in the presence of BBB leakage, the majority of the DSC-MRI studies 
so far have focused on measuring CBV and a permeability index. These applications included use of DSC-MRI for 
tumor grading, for determining its extent, for the differential diagnosis of recurrence vs. radiation necrosis, and for 
guiding tumor biopsy (see (59-61) for recent reviews). However, there have been some studies which used the 
modified (to include leakage) indicator dilution theory (40,44), and quantified also CBF by deconvolution.   
 
Conclusion 
 
DSC-MRI is a very powerful technique that provides unique information regarding cerebral hemodynamics. It has 
been extensively used for the assessment and management of patients, as well as being an invaluable tool in 
experimental studies. The principles of measuring perfusion using DSC-MRI have been reviewed, and the main 
assumptions and steps required for CBF quantification described. The main limitations and artifacts that can affect 
the accuracy of CBF quantification have been discussed, and the main areas of application were reviewed. 
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